3.6 \(\int \cos ^6(a+b x) \, dx\)

Optimal. Leaf size=67 \[ \frac{\sin (a+b x) \cos ^5(a+b x)}{6 b}+\frac{5 \sin (a+b x) \cos ^3(a+b x)}{24 b}+\frac{5 \sin (a+b x) \cos (a+b x)}{16 b}+\frac{5 x}{16} \]

[Out]

(5*x)/16 + (5*Cos[a + b*x]*Sin[a + b*x])/(16*b) + (5*Cos[a + b*x]^3*Sin[a + b*x])/(24*b) + (Cos[a + b*x]^5*Sin
[a + b*x])/(6*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0331819, antiderivative size = 67, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 8, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {2635, 8} \[ \frac{\sin (a+b x) \cos ^5(a+b x)}{6 b}+\frac{5 \sin (a+b x) \cos ^3(a+b x)}{24 b}+\frac{5 \sin (a+b x) \cos (a+b x)}{16 b}+\frac{5 x}{16} \]

Antiderivative was successfully verified.

[In]

Int[Cos[a + b*x]^6,x]

[Out]

(5*x)/16 + (5*Cos[a + b*x]*Sin[a + b*x])/(16*b) + (5*Cos[a + b*x]^3*Sin[a + b*x])/(24*b) + (Cos[a + b*x]^5*Sin
[a + b*x])/(6*b)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \cos ^6(a+b x) \, dx &=\frac{\cos ^5(a+b x) \sin (a+b x)}{6 b}+\frac{5}{6} \int \cos ^4(a+b x) \, dx\\ &=\frac{5 \cos ^3(a+b x) \sin (a+b x)}{24 b}+\frac{\cos ^5(a+b x) \sin (a+b x)}{6 b}+\frac{5}{8} \int \cos ^2(a+b x) \, dx\\ &=\frac{5 \cos (a+b x) \sin (a+b x)}{16 b}+\frac{5 \cos ^3(a+b x) \sin (a+b x)}{24 b}+\frac{\cos ^5(a+b x) \sin (a+b x)}{6 b}+\frac{5 \int 1 \, dx}{16}\\ &=\frac{5 x}{16}+\frac{5 \cos (a+b x) \sin (a+b x)}{16 b}+\frac{5 \cos ^3(a+b x) \sin (a+b x)}{24 b}+\frac{\cos ^5(a+b x) \sin (a+b x)}{6 b}\\ \end{align*}

Mathematica [A]  time = 0.0375434, size = 43, normalized size = 0.64 \[ \frac{45 \sin (2 (a+b x))+9 \sin (4 (a+b x))+\sin (6 (a+b x))+60 a+60 b x}{192 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[a + b*x]^6,x]

[Out]

(60*a + 60*b*x + 45*Sin[2*(a + b*x)] + 9*Sin[4*(a + b*x)] + Sin[6*(a + b*x)])/(192*b)

________________________________________________________________________________________

Maple [A]  time = 0.027, size = 48, normalized size = 0.7 \begin{align*}{\frac{1}{b} \left ({\frac{\sin \left ( bx+a \right ) }{6} \left ( \left ( \cos \left ( bx+a \right ) \right ) ^{5}+{\frac{5\, \left ( \cos \left ( bx+a \right ) \right ) ^{3}}{4}}+{\frac{15\,\cos \left ( bx+a \right ) }{8}} \right ) }+{\frac{5\,bx}{16}}+{\frac{5\,a}{16}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(b*x+a)^6,x)

[Out]

1/b*(1/6*(cos(b*x+a)^5+5/4*cos(b*x+a)^3+15/8*cos(b*x+a))*sin(b*x+a)+5/16*b*x+5/16*a)

________________________________________________________________________________________

Maxima [A]  time = 1.44311, size = 65, normalized size = 0.97 \begin{align*} -\frac{4 \, \sin \left (2 \, b x + 2 \, a\right )^{3} - 60 \, b x - 60 \, a - 9 \, \sin \left (4 \, b x + 4 \, a\right ) - 48 \, \sin \left (2 \, b x + 2 \, a\right )}{192 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^6,x, algorithm="maxima")

[Out]

-1/192*(4*sin(2*b*x + 2*a)^3 - 60*b*x - 60*a - 9*sin(4*b*x + 4*a) - 48*sin(2*b*x + 2*a))/b

________________________________________________________________________________________

Fricas [A]  time = 1.64133, size = 120, normalized size = 1.79 \begin{align*} \frac{15 \, b x +{\left (8 \, \cos \left (b x + a\right )^{5} + 10 \, \cos \left (b x + a\right )^{3} + 15 \, \cos \left (b x + a\right )\right )} \sin \left (b x + a\right )}{48 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^6,x, algorithm="fricas")

[Out]

1/48*(15*b*x + (8*cos(b*x + a)^5 + 10*cos(b*x + a)^3 + 15*cos(b*x + a))*sin(b*x + a))/b

________________________________________________________________________________________

Sympy [A]  time = 3.8272, size = 139, normalized size = 2.07 \begin{align*} \begin{cases} \frac{5 x \sin ^{6}{\left (a + b x \right )}}{16} + \frac{15 x \sin ^{4}{\left (a + b x \right )} \cos ^{2}{\left (a + b x \right )}}{16} + \frac{15 x \sin ^{2}{\left (a + b x \right )} \cos ^{4}{\left (a + b x \right )}}{16} + \frac{5 x \cos ^{6}{\left (a + b x \right )}}{16} + \frac{5 \sin ^{5}{\left (a + b x \right )} \cos{\left (a + b x \right )}}{16 b} + \frac{5 \sin ^{3}{\left (a + b x \right )} \cos ^{3}{\left (a + b x \right )}}{6 b} + \frac{11 \sin{\left (a + b x \right )} \cos ^{5}{\left (a + b x \right )}}{16 b} & \text{for}\: b \neq 0 \\x \cos ^{6}{\left (a \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)**6,x)

[Out]

Piecewise((5*x*sin(a + b*x)**6/16 + 15*x*sin(a + b*x)**4*cos(a + b*x)**2/16 + 15*x*sin(a + b*x)**2*cos(a + b*x
)**4/16 + 5*x*cos(a + b*x)**6/16 + 5*sin(a + b*x)**5*cos(a + b*x)/(16*b) + 5*sin(a + b*x)**3*cos(a + b*x)**3/(
6*b) + 11*sin(a + b*x)*cos(a + b*x)**5/(16*b), Ne(b, 0)), (x*cos(a)**6, True))

________________________________________________________________________________________

Giac [A]  time = 1.18822, size = 62, normalized size = 0.93 \begin{align*} \frac{5}{16} \, x + \frac{\sin \left (6 \, b x + 6 \, a\right )}{192 \, b} + \frac{3 \, \sin \left (4 \, b x + 4 \, a\right )}{64 \, b} + \frac{15 \, \sin \left (2 \, b x + 2 \, a\right )}{64 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^6,x, algorithm="giac")

[Out]

5/16*x + 1/192*sin(6*b*x + 6*a)/b + 3/64*sin(4*b*x + 4*a)/b + 15/64*sin(2*b*x + 2*a)/b